‘Killer Hurricanes’ reconstructs the past to predict storms of the future

In 1780, a powerful hurricane swept across the islands of the Caribbean, killing an estimated 22,000 people; 5,000 more died of starvation and disease in the aftermath. “Our planet is capable of unleashing extreme chaos,” begins the new NOVA documentary “Killer Hurricanes,” set to air November 1 on PBS.

To describe the human impact of such powerful tropical cyclones, the documentary primarily focuses on two storms: the Great Hurricane of 1780 and Hurricane Matthew, a Category 4 storm that slammed into Haiti and Cuba last October. Before the devastating 2017 Atlantic hurricane season (SN Online: 9/21/17), Matthew was considered the biggest Atlantic storm of the last decade.
Still, the film’s larger message remains timely: Studying the hurricanes of the past can offer insights into storms of the future — and, hopefully, help coastal and island communities prepare for such events.

The documentary describes the work of researchers as they examine both human and geologic records to track past cyclones. Because the Great Hurricane occurred during relatively recent history, researchers can use eyewitness accounts and ship records to estimate not only the size of the storm, but also to track its path and calculate the storm surge.
But geologists such as Jeff Donnelly of the Woods Hole Oceanographic Institution in Massachusetts and Amy Frappier of Skidmore College in Saratoga Springs, N.Y., are looking deeper into the past. Donnelly finds physical traces of prehistoric hurricanes buried in seafloor sediments, while Frappier detects chemical traces in stalagmites growing in caves across the Caribbean. These data reveal a troubling pattern: The frequency of strong hurricanes distinctly increases when ocean temperatures are warmer. What’s more, hurricanes’ paths have shifted northward over the last 450 years, moving closer to the contiguous United States.

As the film notes, ocean waters are now warming at a rapid rate. Meanwhile, sea levels are rising, and the water in the oceans expands as it warms. Both effects will augment the impact of storm surge from such cyclones.

“Killer Hurricanes” doesn’t break much new ground, and the film’s stark conclusion about the future paths and intensities of powerful cyclones is one that climate scientists have long been signaling. But coming on the heels of a deadly hurricane season, and with the United States’ future participation in the Paris climate accord in limbo (SN Online: 6/1/17), the film may serve as a powerful reminder of the human cost of climate change.

Photons are caught behaving like superconducting electrons

Light is a fan of the buddy system. Photons, or particles of light, have been spotted swapping energy with partners. This chummy behavior resembles how electrons pair up in materials that conduct current without resistance, known as superconductors, researchers report in a paper accepted in Physical Review Letters.

Although the photons exchange energy like electrons do, it’s unknown whether the particles are actually bound together as electrons are, and whether photons could produce an effect analogous to superconductivity. “This is a door that is opened,” says study coauthor Ado Jorio, a physicist at the Universidade Federal de Minas Gerais in Brazil. Now, he says, the questions that must be addressed are, “How far can we push this similarity? Can we find with photons incredible results like we find for electrons?”
In certain solid materials cooled to extremely low temperatures, electrons form partnerships called Cooper pairs (SN: 6/13/15, p. 8), which allow superconductivity to occur. Although the negatively charged particles typically repel one another, two electrons can bind together by exchanging phonons, or quantum packets of vibration, via the lattice of ions within these materials. This alliance coordinates the electrons’ movements and thereby eases their passage through the material, allowing them to flow without resistance. Superconductivity’s potential technological applications — which include energy-efficient power transmission, superstrong magnets and levitating trains — have attracted heaps of scientific interest in the phenomenon.

Now, Jorio and colleagues have shown photons behaving similarly to superconducting electrons. When the researchers shined a laser on water, pairs of photons that emerged from the liquid at the same time tended to have complementary energies. While one photon had lost a little energy, another had gained the same amount of energy, indicating that they were exchanging quantum vibrations. The effect appeared in a variety of transparent materials, says Jorio, and it was observed at room temperature, unlike electron pairing in superconductors.

The team also showed that the exchanged quantum vibrations were “virtual” — appearing only for fleeting moments — just like the vibrations exchanged by electrons. The theory that explains the interaction “is exactly the same as for the electrons,” Jorio says.

Scientists already knew that photons can lose or gain energy via vibrations, but the similarity with Cooper pairs is a new and interesting way of thinking about the effect, says physicist Ian Walmsley of Oxford University, who was not involved with the research. “It’s a field that has not yet been explored.”
It is still too early to know how far the analogy with superconducting electrons extends, says physicist Ben Sussman of the National Research Council of Canada in Ottawa, who was not involved with the research. But the connection seems worth investigating: “This is an interesting rabbit hole indeed.”

Scary as they are, few vampires have a backbone

Halloween horror aside, vampires are really pretty spineless.

Most have no backbone at all. By one count, some 14,000 kinds of arthropods, including ticks and mosquitoes, are blood feeders. Yet very few vertebrates are clear-cut, all-blood specialists: just some fishes and three bats. Why hasn’t evolution produced more vertebrate vampires?

The question intrigues herpetologist Harry Greene of Cornell University, who “can’t think of a single example among amphibians and reptiles,” he says. (Some birds are opportunists, sneaks or outright meat eaters, but they don’t have the extreme specialization of bats.)
Kurt Schwenk of the University of Connecticut in Storrs, who studies feeding morphology, comes up empty, as well. As he muses over what animals might have precursor biology that could lead to blood feeding, “a leechlike or lamprey-like blood-sucking tadpole should be a real possibility,” he says. The idea gives him “the heebie-jeebies,” but some tadpole species have already evolved mouths that can cling, and plenty of tadpoles are carnivorous.
Looking at the question from a different point of view — asking what would favor, or not, the evolution of blood feeding—he comes up with a less disturbing answer. For carnivorous animals, eating meat is nutritionally better than sipping blood alone, he says. So vampirism might not offer much of an advantage. “If you don’t need to be light and you’re not a parasite,” he says, there’s “no point in limiting yourself to blood.” So maybe vampiric tadpoles aren’t part of some creepy future after all.
Some adult fishes have evolved blood feeding, even mainstream vertebrates with jaws and bones (unlike cartilage-only jawless lampreys). Among the clear-cut bony examples are some Vandellia canidru catfishes, which fasten onto a gill of a much larger fish and let the fish heart pump sustenance into them as they nestle inside the protected gill chamber. (This is different from the supposed, or maybe mythical, tendency of some canidru catfishes to misunderstand fluid streams and swim up the urethras of humans in the water.)

Among vertebrates, vampirism inside or outside of gills might have arisen from ancestors that hitchhiked on big fishes and nibbled off parasites, in the same way modern remoras (also known as suckerfish) do, suggests parasitologist Tommy Leung of the University of New England in Armidale, Australia. Biologists already know about parasite-picker species, such as some cleaner fish, that will cheat and nip mucus or scales if they can get them. Actual blood-sucking cheats could be mere geologic ages away from that evolutionary step. Vertebrates may have relatively few vampires, but a greater number of almost-vampires.

Full-scale vampirism “is a tough way to make a living,” says William Schutt of Long Island University in Brookville, NY, and author of a book on the topic, Dark Banquet. But also, he adds, one big reason why there are fewer vertebrate vampires than arthropod bloodsuckers may be in the numbers. There are just fewer vertebrates: an estimated 60,000 versus a whopping 10 million arthropods.

New setup for image recognition AI lets a program think on its feet

Artificial intelligence is getting some better perspective. Like a person who can read someone else’s penmanship without studying lots of handwriting samples, next-gen image recognition AI can more easily identify familiar sights in new situations.

Made from a new type of virtual building block called capsules, these programs may cut down the enormous amount of data needed to train current image-identifying AI. And that could boost such technology as machine-made medical diagnoses, where example images may be scarce, or the responsiveness of self-driving cars, where the view is constantly shifting. Researchers with Google will present this new version of an artificial neural network at the Neural Information Processing Systems conference in Long Beach, Calif., on December 5.
Neural networks are webs of individual virtual nerve cells, or neurons, that learn to pick out objects in pictures by studying labeled example images. These networks largely classify pictures based on whether they contain certain features. For instance, a program trained on a series of head shots might conclude that a face has two eyes, a nose and a mouth. Show that program a face in profile with only one eye visible, though, and it may not recognize the photo as a face, explains Roland Memisevic, a computer scientist at the University of Montreal who was not involved in the work.

To overcome that limitation, researchers can train a neural network on millions of photos from myriad angles, and the program memorizes all the different ways a face might look. Compared with the human brain, which doesn’t need anywhere near a million examples to know what a face looks like, this system is wildly inefficient. “It’s a disaster,” Memisevic says. “Capsules try to fix that.”

Instead of webs of individual artificial neurons, these new programs have webs of clusters of neurons, called capsules. These teams of neurons can provide more information than one neuron by itself. Each capsule is designed to track not only whether a certain feature is in an image, but also properties of that feature — say, a nose’s size, orientation and position. This spatial awareness helps the program better recognize objects in previously unseen scenarios.

A capsule-containing network trained on head shots could see a face in profile and deduce — based on the appearance of the visible eye, nose and mouth — that the other eye is simply obscured, and the picture depicts a face. Since capsule networks are better at applying what they know to new situations, these neural networks need less training data to achieve the same performance as their predecessors, says Sara Sabour, a computer scientist with Google Brain in Toronto.
Sabour and her colleagues trained one capsule network on images of handwritten numbers and tested it on pictures where each number was slightly distorted. The capsule network recognized the warped images with 79 percent accuracy; a typical neural network trained on the same amount of data only got 66 percent right.

In another experiment, Sabour and colleagues trained a similar capsule network on tens of thousands of photos of toys, and then asked it to recognize the toys from new viewpoints. In this challenge, reported in a paper submitted to the 2018 International Conference on Learning Representations in Vancouver, the capsule network was wrong only about 1.4 percent of the time. A conventional neural network made almost twice as many errors.

Mini brains may wrinkle and fold just like ours

PHILADELPHIA — Flat brains growing on microscope slides may have revealed a new wrinkle in the story of how the brain folds.

Cells inside the brains contract, while cells on the outside grow and push outward, researchers at the Weizmann Institute of Science in Rehovot, Israel, discovered from working with the lab-grown brains, or organoids. This push and pull results in folds in the organoids similar to those found in full-size brains. Orly Reiner reported the results December 5 at the joint meeting of the American Society for Cell Biology and the European Molecular Biology Organization.
Reiner and her colleagues sandwiched human brain stem cells between a glass microscope slide and a porous membrane. The apparatus allowed the cells access to nutrients and oxygen while giving the researchers a peek at how the organoids grew. The cells formed layered sheets that closed up at the edges, making the organoids resemble pita bread, Reiner said. Wrinkles began to form in the outer layers of the organoids about six days after the mini brains started growing.

These brain organoids may help explain why people with lissencephaly — a rare brain malformation in which the ridges and folds are missing — have smooth brains. The researchers used the CRISPR/Cas9 gene-editing system to make a mutation in the LIS1 gene. People with lissencephaly often have mutations in that gene. Cells carrying the mutation didn’t contract or move normally, the team found.

Reiner and her colleagues aren’t the first to propose the push-pull idea for how brains fold. But the researchers were able to show the concept at work in their experimental system, says biophysicist Xavier Trepat of the Institute for Bioengineering of Catalonia in Barcelona, who was not involved in the study. “They really were able to reproduce the shape of what we all imagine the brain should look like,” he says. “It’s not a brain, but they see structures that look like it.”

U.S. religion is increasingly polarized

There’s both inspiring and troubling news for holiday worshippers.

Unlike other historically Christian Western nations, the United States is not losing its religion, say sociologists Landon Schnabel of Indiana University Bloomington and Sean Bock of Harvard University. But America is becoming as polarized religiously as it is politically, the researchers report online November 27 in Sociological Science.

Intense forms of religion, such as Christian evangelicalism, have maintained their popularity for nearly 30 years, Schnabel and Bock find after analyzing almost 30 years of U.S. survey data. At the same time, moderate forms of religion, such as mainline Protestantism, have consistently lost followers.
Religious moderates’ exodus from their churches stems partly from a growing link between religion and conservative politics, exemplified by the rise of the religious right in the late 1980s, the researchers suspect. Political liberals and moderates who already felt lukewarm toward the religion of their parents increasingly report identifying with no organized religion, especially if leaders of their childhood churches have taken conservative stances on social issues. Many Americans still report that they believe in God and pray, so they haven’t turned to atheism, the scientists say.

Population trends also favor intense forms of religion, Schnabel holds. Mainline Protestantism’s decline from 35 percent of the U.S. population in 1972 — about 73.5 million people — to 12 percent in 2016 — nearly 39 million people — reflects low fertility rates among these Protestants and limited numbers of new adherents from immigration and conversion. Opposite trends among U.S. evangelicals helped their form of intense Christianity surge from 18 percent of the population in 1972 to a steady level of about 28 percent from 1989 to 2016.

“More moderate forms of organized religion could become increasingly irrelevant in the United States,” Schnabel says.
The new findings play into an academic debate about the fate of religion in modern societies. Some scholars argue that in wealthy nations marked by scientific advances, religion inevitably withers. National surveys in 13 other Western, historically Christian nations show a general weakening of religious beliefs, even among intense believers, since 1991, the researchers find. But Schnabel and Bock are among those who view the United States as an exception where intense religion holds steady and even many of those leaving churches keep their faith.

The researchers examined data from nationally representative surveys on religion and other topics conducted from 1989 to 2016 by the General Social Survey, or GSS, a project of the National Opinion Research Center at the University of Chicago. GSS surveys include approximately 1,500 people annually.

Story continues below image
The proportion of the U.S. population citing strong ties to any religion held steady at around 36 percent during the study period. But the share of adults identifying themselves as religiously unaffiliated rose from around 9 percent to around 20 percent of the population, the researchers report. In another sign of loosening religious ties, those who never attended religious services rose from around 14 percent to around 25 percent of the population. Occasional attendance dropped from about 80 percent to about 70 percent.

Still, those who rarely or never prayed remained at about 24 percent of the population from 1989 to 2016. People who prayed several times a day rose from around 24 percent to about 30 percent of the total.

A belief in the Bible as God’s literal word held steady at roughly one-third of Americans. A view of the Bible as inspired by a higher power but not literal fell slightly to just under half of the population. Those tagging the Bible as a book of fables rose from around 15 percent to around 22 percent.

The new findings underscore the growing polarization of U.S. religion, say Michael Hout of New York University and Claude Fischer of the University of California, Berkeley. In a 2014 report based on GSS data, the two sociologists found that most political liberals and some political moderates who weakly identified with their parents’ religion have increasingly said that they prefer no particular religion. That trend was most pronounced for those reporting that the church they grew up with had become an advocate of politically conservative positions. Many of those people expressed a qualified belief in God, endorsing neither atheism nor absolute certainty in a higher power’s existence. Political conservatives, including those who seldom attended services or had doubts about church doctrine, had no complaints about religious leaders’ conservative political pronouncements.

Members of the millennial generation born since 1990 report low levels of religious involvement regardless of their politics, Hout adds. Millennials are skeptical of institutions in general although most still believe in God, he says. “Millennials are more comfortable with do-it-yourself religion than none at all.”

Sociologists David Voas of University College London and Mark Chaves of Duke University disagree. Millennials are part of a larger U.S. trend in which each successive generation over nearly the last century has reported slightly less intensity of religious belief than the one before, Voas and Chaves reported in a 2016 analysis of GSS data. For instance, in 2014, only 45 percent of U.S. adults ages 18 to 30 had no doubts that God exists versus 68 percent of those age 65 or over.

“The proportion of intensely religious Americans is being eroded, albeit very slowly,” Voas contends.

The sun’s outer atmosphere is far more complex than previously thought

NEW ORLEANS — Despite its smooth appearance, the sun’s wispy outer atmosphere is surprisingly full of knots, whorls and blobs.

Newly analyzed observations from NASA’s STEREO spacecraft show that the sun’s outer corona is just as complicated as the highly structured inner corona, solar physicists reported December 12 at the fall meeting of the American Geophysical Union. That previously unseen structure could help solve some of the sun’s biggest puzzles, including how the solar wind is born and why the corona is so much hotter than the solar surface.
The corona is made up of charged plasma, which roils in famous loops and fans that follow magnetic field lines emerging from the surface of the sun (SN Online: 8/17/17). At a certain distance from the sun, though, that plasma escapes the corona and streams through the solar system as the solar wind, a constant flow of charged particles that pummels the planets, including Earth (SN Online: 8/18/17).

But solar physicists don’t know where the plasma gets enough energy to accelerate away from the massive, magnetic sun. And they don’t understand why the corona, which sizzles at several million degrees Celsius, has such higher temperatures than the solar surface, which chills at a mere 5,500° C (SN Online: 8/20/17).

Both problems might be cleared up by better understanding an energetic process called reconnection, which happens when magnetic field lines merge when they get too close to each other. Reconnection releases energy and helps move plasma around, so the process could be important to heating the corona and driving solar wind.

But in the best observations until now, the outer corona appeared smooth and uniform. To explain that smoothness, field lines would have to keep their distance from each other without a lot of reconnection. What’s more, physicists couldn’t tell where the boundary between the corona and the solar wind began, which might help to find that missing energy source.
“That’s changed,” solar physicist Craig DeForest of the Southwest Research Institute in Boulder, Colo., said at the AGU meeting. “Using STEREO, we’ve recently been able to drill in deeply enough to see the transition at the outer edge of the corona, where the dynamics change from what we might call coronal plasma to what we might call the young solar wind plasma.”

Story continues below video、
DeForest and colleagues collected data for three days with STEREO in 2014 to gain more detail about small-scale changes in the outer corona than previously obtained. The researchers also processed the resulting images in a new way to bring those changes into focus.

Surprisingly, the team found that the outer corona is full of moving blobs and fine streams of plasma that vary in density by a factor of 10, suggesting that the magnetic field lines there are moving and merging more than scientists thought. “It turns out the apparent smoothness is a reflection of our instruments, not the corona itself,” DeForest says. “There’s almost certainly reconnection in the outer corona.”

The researchers also found that the corona probably fades into the solar wind between 14 million and 56 million kilometers away from the sun — about 10 to 40 times the sun’s diameter. That’s still a big range, but NASA’s Parker Solar Probe spacecraft, scheduled to launch in 2018, will fly right through that boundary. The probe will swoop within 6.4 million kilometers of the sun and take the first direct measurements of the corona — and perhaps figure out more precisely where the corona becomes the solar wind.

For now, the STEREO observations “are just tantalizing hints at an entire new set of phenomena,” DeForest says. Understanding the details of those processes “is going to require both careful analysis from Parker Solar Probe and also new, better imaging instruments.”

Solar physicist Steven Cranmer of the University of Colorado Boulder, who has made simulations of magnetic reconnection in the outer corona, finds the results exciting. Questions about the sun’s hot corona and the acceleration of the solar wind are still unsolved “not because of a lack of ideas, but because there are too many ideas,” he says. “I think we’re getting close to having the data that will let us rule out a good swath of these proposed ideas.”

The science behind kids’ belief in Santa

Over the past week, my little girls have seen Santa in real life at least three times (though only one encounter was close enough to whisper “yo-yo” in his ear). You’d think that this Santa saturation might make them doubt that each one was the real deal. For one thing, they looked quite different. Brewery Santa’s beard was a joke, while Christmas-tree-lighting Santa’s beard was legit. Add to that variations in outfits and jolliness levels.

But as I delved into the Santa-related research, I found I was wrong to think his omnipresence might throw my kids off. It turns out that the more kids see real, live Santa Clauses, the more likely they are to think he’s real. More exposure actually tracked with stronger belief, scientists reported in Cognitive Development in 2016.

That got me wondering about this belief. Like many parents, I feel a little hint of unease when it comes to telling my trusting, innocent children a lie. But lots of parents conspire to tell this lie to their children. An AP survey from 2011 (the most recent I could find on this pressing issue) revealed that 84 percent of adult respondents believed in Santa as a child.

Many of these former children had their Christmas beliefs shattered around age 8, other studies suggest. A fascinating paper from 1978 found that 85 percent of 4-year-olds believed in Santa. Five percent didn’t, and 10 percent were still thinking about it. But only 25 percent of 8-year-olds believed in Santa, with 20 percent not believing and 55 percent transitioning in their beliefs. Funnily enough, 60 percent of these same 8-year-olds still believed in the tooth fairy.
This shift in belief from age 4 to 8 has some psychology behind it. The influential child psychologist Jean Piaget proposed that around age 8 children enter the “concrete operational stage” of thinking — a critical, observant phase of questioning impossible things. (To be clear, it is impossible for Santa to fly around the world and deliver toys to all the houses, even with the 48 hours he’d have thanks to the Earth’s time zones, and other time-warping assists. Physicists have looked into it.)

Eight-year-olds’ discerning mindset was detected in a study that prodded children to list not toys, but questions for Santa. Young children tended to ask clarifying sorts of questions, such as “Is the North Pole cold?” “What are your elves’ names?” and “What do your reindeer do during the summer?” Those questions get at minor details without coming close to the central mysteries at the heart of a magical Santa. Older kids, however, were more likely to ask the toughies: “How do you fit inside a chimney?” and “How can you see everyone in the whole wide world?”

Once these questions start coming from your kid, the end may be in sight. But take heart, from yet another scientific study of Santa. Children are a sturdy bunch, and do pretty well after they find out the truth, interviews showed. In fact, it’s probably a relief when the entire world stops gaslighting kids and they finally get their hunches confirmed. The bad news is that the parents didn’t fare so well, describing themselves as predominantly sad after their children learned the truth.

For parents, their children’s discovery is an end of an era, a loss of a ritual tied up in family, tradition and treats. But sadder to me, I think, is that when that reckoning comes to my little girls, it will be a vivid reminder that my time with my small children is scant. These moments of magical thinking fly by faster than Santa would need to travel to complete his furious dash around the world.

Ask AI: How not to kill online conversations

A new artificial intelligence could tell whether your next post to an online forum will engage others or fall flat.

Computer scientist Qiaozhu Mei of the University of Michigan in Ann Arbor and colleagues trained a machine-learning program on about 63,000 Reddit threads to learn what dialog-ending responses look like.

This kind of chat-savvy computer code, described in a paper accepted to the 2018 Web Conference in Lyon, France, could someday notify users before they hit “submit” if a post is likely to shut down discussion. Such feedback could lead to more satisfying and productive online conversations.
AI’s guide to being an online conversationalist
Stay on topic. Posts that repeat words used elsewhere in a thread or use more related terms are less likely to end a conversation.

Share experiences. Comments that include words such as “talked,” “heard” or “seen” are liable to incite further discussion.

Keep it moving. The more time that elapses between a post and a reply, the more likely that reply will go unanswered.

Elaborate. Unlike in-person chats, where long monologs can bore those within earshot, lengthier online posts tend to get more responses.

Be polite. Posts that include words like “Mr.” and “Mrs.” are more likely to encourage a back and forth, compared with responses that address people with insulting or intense language, such as curse words or an all-caps “YOU.”

Tiny scales in ancient lagoon may be the first fossil evidence of the moth-butterfly line

Newly described little scaly bits could push back the fossil record of the moth-and-butterfly branch on the tree of life by some 70 million years. That raises the question of whether the drinking-straw mouthparts evolved long before the flower nectar many drink today.

The microscopic ridged scales date from roughly 200 million years ago, around the time of one of Earth’s less famous mass extinctions, says fossil-pollen specialist Bas van de Schootbrugge of Utrecht University in the Netherlands. During an unrelated study of ocean oxygen during this dire time, he and his colleagues pulled up cores of sediment in northern Germany near Braunschweig from what had once been a huge lagoon. In the sediment lay mere dots of insect scales.
Comparing the ridges and inner structure of the scales with those from modern insects suggests the fossils came from the evolutionary branch of insects that today gives us moths and butterflies with nectar-sipping mouthparts. No recognizable mouthparts appeared in the sediment. Yet the early existence of distinctive scales might mean this moth-butterfly drinking organ, a proboscis, evolved before the explosion of the classic flowering plants that offer nectar for pollination, van de Schootbrugge and colleagues propose January 10 in Science Advances.
The land already had plants: ferns, mosses and their relatives growing under trees that formed just-about naked seeds, without cushy protective ovaries and other floral coddling. Naked-seeded plants, many of them wind-pollinated such as pines and other conifers, thrive today. But the great evolutionary burst of true flowers—magnolias, roses, legumes, asters and the whole multicolored rainbow — that many moths and butterflies pollinate had yet to arise.These fossils date from a turbulent time when the great land mass called Pangea was cracking into continents. As the Triassic Period ended and the Jurassic dawned, volcanic eruptions on the straining land spewed greenhouse gases and toxins that changed the atmosphere and climate.
The previous record-holder for earliest moth-butterfly fossils came from about 130 million years ago, a bit after a major expansion of flowering plants. But when coauthor Timo van Eldijk, also at Utrecht, compared the newly found insect scales with those from silverfish, beetles and other scaly insects, modern scales of a big branch of the moth-butterfly lineage proved the best match.
In the times of the ancient scales, generally hot and dry conditions might have favored mouthparts specialized for drinking whatever liquids were to be found, the researchers propose.

Other work on how this proboscis evolved proposes that early moths started with chewing mouthparts and ate spores and pollen, says Harald W. Krenn of the University of Vienna. He and colleagues have proposed an intermediate phase of a short, tubelike structure good for slurping up droplets such as “honeydew” copiously excreted by sap-feeding aphids. A big question, though, is when early moths might have evolved such a drinking convenience.

The notion that the moth mouthparts arose before a big floral takeover sounds plausible to paleoecologist Conrad Labandeira of the Smithsonian Institution in Washington, D.C. Drinking-straw mouthparts had evolved in at least three other big insect groups (dipteran flies, lacewings and scorpionflies) somewhat before the full floral evolutionary extravaganza. Even some of the ancient naked-seeded plant groups, such as cycads, secrete nutritious droplets from reproductive structures that modern insects visit.

Interpreting the scales as a sign of an early moth proboscis is “possible,” says taxonomist Erik van Nieukerken of the Naturalis Biodiversity Center in Leiden, the Netherlands, whose specialties include early moths. There are other possibilities, too, for imagining ancient moth mouthparts, he cautions. Saying definitely that the newfound scales reveal the dawn of the proboscis might be “a bit too quick.”