CRISPR adds storing movies to its feats of molecular biology

Short film is alive and well. Using the current trendy gene-editing system CRISPR, a team from Harvard University has encoded images and a short movie into the DNA of living bacteria.

The work is part of a larger effort to use DNA to store data — from audio recordings and poetry to entire books on synthetic biology. Last year, Seth Shipman and his colleagues at Harvard threw CRISPR into the mix when they used the editing system to record molecular data in the DNA of Escherichia coli.

Now, the team is upping its game with images of a human hand and a short movie, a GIF of a galloping horse from iconic turn-of-the-century photographer Eadweard Muybridge’s Human and Animal Locomotion. In the code, the nucleotide bases that form DNA correspond to black-and-white pixel values. The video was encoded frame by frame. Once the team synthesized the DNA, they used CRISPR and two associated Cas proteins (Cas 1 and 2) to slip the data into the genetic blueprint of E. coli colonies.

After growing the bacteria for several generations, the scientists retrieved the code for the images and film frames and were able to reconstruct the clips. About 90 percent of the encoded information was left intact. Though it’s not a perfect storage system, the results demonstrate CRISPR’s potential for hiding data in the genetic blueprints of bacteria, Shipman and his colleagues write July 12 in Nature.

These chip-sized spacecraft are the smallest space probes yet

Spacecraft have gone bite-sized. On June 23, Breakthrough Starshot, an initiative to send spacecraft to another star system, launched half a dozen probes called Sprites to test how their electronics fare in outer space. Each Sprite, built on a single circuit board, is a prototype of the tiny spacecraft that Starshot scientists intend to send to Alpha Centauri, the trio of stars closest to the sun. Those far-flung probes would be the smallest working spacecraft yet.

“We’re talking about launching things that are a thousand times lighter than any previous spacecraft,” says Avi Loeb, an astrophysicist at Harvard University who is part of the committee advising the initiative. A Sprite is only 3.5 centimeters square and weighs four grams, but packs a solar panel, radio, thermometer, magnetometer for compass capabilities and gyroscope for sensing rotation.

These spacecraft are designed to fly solo, but for this test, they hitched a ride into low Earth orbit on satellites named Max Valier and Venta-1. Each satellite has one Sprite permanently riding sidecar, and the Max Valier craft has another four it could fling out into space. Unfortunately, as of August 10, ground controllers haven’t yet been able to reach the Max Valier satellite to send a “Release the Sprites!” command. One of the permanently attached Sprites — probably the one on Venta-1 — is in radio contact.

Before sending next-gen Sprites off to Alpha Centauri, scientists plan to equip them with cameras, actuators for steering and other tools. “This was really just the first step in a long journey for Starshot,” Loeb says.

‘Killer Hurricanes’ reconstructs the past to predict storms of the future

In 1780, a powerful hurricane swept across the islands of the Caribbean, killing an estimated 22,000 people; 5,000 more died of starvation and disease in the aftermath. “Our planet is capable of unleashing extreme chaos,” begins the new NOVA documentary “Killer Hurricanes,” set to air November 1 on PBS.

To describe the human impact of such powerful tropical cyclones, the documentary primarily focuses on two storms: the Great Hurricane of 1780 and Hurricane Matthew, a Category 4 storm that slammed into Haiti and Cuba last October. Before the devastating 2017 Atlantic hurricane season (SN Online: 9/21/17), Matthew was considered the biggest Atlantic storm of the last decade.
Still, the film’s larger message remains timely: Studying the hurricanes of the past can offer insights into storms of the future — and, hopefully, help coastal and island communities prepare for such events.

The documentary describes the work of researchers as they examine both human and geologic records to track past cyclones. Because the Great Hurricane occurred during relatively recent history, researchers can use eyewitness accounts and ship records to estimate not only the size of the storm, but also to track its path and calculate the storm surge.
But geologists such as Jeff Donnelly of the Woods Hole Oceanographic Institution in Massachusetts and Amy Frappier of Skidmore College in Saratoga Springs, N.Y., are looking deeper into the past. Donnelly finds physical traces of prehistoric hurricanes buried in seafloor sediments, while Frappier detects chemical traces in stalagmites growing in caves across the Caribbean. These data reveal a troubling pattern: The frequency of strong hurricanes distinctly increases when ocean temperatures are warmer. What’s more, hurricanes’ paths have shifted northward over the last 450 years, moving closer to the contiguous United States.

As the film notes, ocean waters are now warming at a rapid rate. Meanwhile, sea levels are rising, and the water in the oceans expands as it warms. Both effects will augment the impact of storm surge from such cyclones.

“Killer Hurricanes” doesn’t break much new ground, and the film’s stark conclusion about the future paths and intensities of powerful cyclones is one that climate scientists have long been signaling. But coming on the heels of a deadly hurricane season, and with the United States’ future participation in the Paris climate accord in limbo (SN Online: 6/1/17), the film may serve as a powerful reminder of the human cost of climate change.