Xi'an police urge over 20 individuals considered high-risk involved in overseas fraud to return to China

In a new campaign to combat new types of illegal activities across telecommunications networks, as well as to punish cross-border illegal activities, the Xi'an police from Northwest China's Shaanxi Province on Wednesday issued a disciplinary notice and disclosed information regarding more than 20 individuals from Chang'an district who are moving across areas such as northern Myanmar, the Golden Triangle, the United Arab Emirates, and Cambodia.

Starting from the date of the notice, these individuals who are illegally located overseas and involved in high-risk fraud are required to voluntarily return to China through proper channels before September 10, 2023. Within 14 days prior to their return, they must report to the local police station in their registered residence on their own or through their family members, the notice said.

Family members of those who are still stranded overseas and involved in high-risk fraud should actively cooperate with the public security organs, promptly contact and urge these individuals to return to China and surrender themselves. Those who voluntarily surrender and truthfully confess to their illegal activities may receive lenient or mitigated punishments according to law. Those with minor offenses may be exempted from punishment according to the law. However, those who persist in their refusal to return to China after the deadline will be subject to investigation and pursuit through legal means, the notice warned.

Xi'an police stated that the over 20 individuals involved in fraud will be publicly exposed and strictly punished according to the law. Their household registration will be frozen, and all household registration-related services, such as identity cards and driving licenses, will be suspended. Communication and banking services will be strictly controlled. All mobile phone cards will be deactivated, and non-counter services of their bank cards will be suspended. All government policy subsidies, social welfare benefits, and national assistance guarantees will be suspended. 

Moreover, when these individuals or their direct three-generation family members undergo political reviews for joining the Communist Youth League, the Communist Party of China, joining the military, or applying for civil service positions or positions in public institutions, their reviews will be strictly conducted in accordance with the law and regulations.

Furthermore, the Xi'an police emphasized in the notice that any unit, organization, or individual that provides safe harbor, financial resources, transportation, or information, or engages in forgery, cover-ups, or other facilitation to help these individuals involved in overseas illegal activities evade punishment will be held legally accountable.

New telescopes will search for signs of life on distant planets

Our galaxy is teeming with planets. Over the last 25 years, astronomers have cataloged about 2,000 worlds in 1,300 systems scattered around our stellar neighborhood. While most of these exoplanets look nothing like Earth (and in some cases, like nothing that orbits our sun), the bonanza of alien worlds implies a tantalizing possibility: There is a lot of real estate out there suitable for life.

We haven’t explored every corner of our solar system. Life might be lurking beneath the surface of some icy satellites or in the soil of Mars. For such locales, we could conceivably visit and look for anything wriggling or replicating. But we can’t travel (yet) to worlds orbiting remote suns dozens of light-years away. An advanced alien civilization might transmit detectable radio signals, but primitive life would not be able to announce its presence to the cosmos.
At least not intentionally.
On Earth, life alters the atmosphere. If plants and critters weren’t around to keep churning out oxygen and methane, those gases would quickly vanish. Water, carbon dioxide, methane, oxygen and ozone are examples of “biosignatures,” key markers of a planet crawling with life as we know it. Setting aside questions about how recognizable alien life might be, detecting biosignatures in the atmosphere of an exoplanet would give astronomers the first strong clue that we are not alone.
Biosignatures aren’t proof of thriving ecosystems. Ultraviolet light from a planet’s sun can zap water molecules and create a stockpile of oxygen; seawater filtering through rocks can produce methane. “We’ll never be able to say 100 percent that a planet has life,” says Sarah Rugheimer, an astrophysicist at the University of St. Andrews in Scotland. But astronomers hope that, given enough information about an exoplanet and the star it orbits, they can build a case for a world where sunlight and geology aren’t enough to explain its chemistry — one where life is a viable possibility. Finding a planet similar to Earth is probably still decades away, but thanks to a couple of upcoming telescopes, astronomers might be on the verge of spying on habitable worlds around nearby stars.

NASA’s Transiting Exoplanet Survey Satellite, or TESS, will launch in 2017 on a quest to detect many of the exoplanets that orbit the stars closest to us. One year later, the James Webb Space Telescope will launch and peek inside some of these newfound atmospheres. With their powers combined, TESS and James Webb could identify nearby planets that are good candidates for life. These worlds will probably be quite different from Earth — they’ll be a bit larger and orbit faint, red suns — but some researchers hope that a few will offer hints of alien biology.
Eyes on the sky
Over the next decade, several telescopes will join existing observatories in the hunt for exoplanets and hints of alien life.

Exoplanets don’t give up their secrets easily; they are distant, tiny and snuggled up to blazing stars. With some exceptions, current telescopes can’t directly see exoplanets, so astronomers use other means to infer their existence. In rare cases, a remote solar system is oriented so that its planets pass between their sun and Earth, an event known as a transit. During a transit, the star temporarily dims as a planet blocks some of its light.

Transits are powerful tools; not only can they help reveal a planet’s density — a way to distinguish gas planets from solid ones — but they also can allow astronomers to inventory the molecules floating in an exoplanet’s atmosphere. During a transit, molecules in the planet’s atmosphere absorb certain wavelengths of the star’s light, leaving a chemical fingerprint. By deciphering that fingerprint, researchers can deduce the chemical makeup of an alien world.

Pushing Hubble
Astronomers so far have used the transit technique primarily with space-based telescopes such as the Hubble Space Telescope to investigate the atmospheres of more than 50 exoplanets, most of them worlds the size of Jupiter and Neptune (SN: 11/15/14, p. 4). The puffy atmospheres of giant planets are easier to detect than the relatively slim atmospheres of small rocky worlds. As tools have improved, researchers have started to check out super-Earths, planets that are smaller than Neptune but larger than ours. Though no such planets exist in our solar system, they appear to be one of the most common types in the galaxy.

Only three super-Earths have come under telescope scrutiny so far: GJ 1214b, HD 97658b and 55 Cancri e. These worlds are nothing like Earth. Two of them orbit dim, red suns, all of them whip around their stars in a few days (or even hours) and none are in the coveted habitable zone — the region around a star where a planet’s temperatures are just right for liquid water. Around GJ 1214b and HD 97658b, astronomers found no signs of molecules absorbing starlight, leading researchers to conclude that both worlds are blanketed in clouds or haze (SN Online: 1/2/14).

In February, researchers reported signs of hydrogen cyanide on 55 Cancri e. If confirmed, it would be the first detection of any molecule in the atmosphere of a super-Earth. “These are very challenging measurements, at the limit of [the Hubble Space Telescope’s] capabilities,” cautions Heather Knutson, an astrophysicist at Caltech. “We’re still learning about the performance of the telescope at this level of precision.”

Astronomers will undoubtedly try to squeeze more information out of similar worlds. But, says Kevin France, an astrophysicist at the University of Colorado Boulder, “we’ve pushed Hubble about as far as we can.” And Hubble won’t be around forever (SN: 4/18/15, p. 18). To continue sniffing around in exoplanet atmospheres, researchers are looking toward Hubble’s successor, the James Webb Space Telescope.

James Webb “is going to be a revolution in astronomy,” says Jonathan Lunine, an astrophysicist at Cornell University. The infrared observatory boasts a mirror 2.7 times as wide as Hubble’s. James Webb will seek out the first generation of stars, track how galaxies grow and — most relevant to the search for life — poke around in planetary atmospheres.
Analyzing the atmospheres of planets the size of Neptune and Jupiter should be a breeze for James Webb. These large planets block enough light to make transits readily detectable, and the fluffy atmospheres are easier to measure. Super-Earths, which are smaller with thin atmospheres, are more challenging, but James Webb should be able to investigate a few. Although replicas of Earth are beyond even James Webb’s capabilities, there will be plenty for the observatory to do. “Even if we can’t get biosignatures on planets the size of Earth, we’re going to find out so much about the nature of exoplanets,” Lunine says. “It’s going to open up a huge number of doors.”

The trouble with an Earth-like world is that it doesn’t transit often and both the planet and its atmosphere are tiny. It’s the same kind of problem an alien group would experience trying to detect us. When viewed from afar, Earth blocks less than 0.01 percent of the sun’s light, and only a few percent of that is due to the atmosphere. To an alien astronomer, Earth crosses the sun once a year for, at most, 13 hours. And that’s assuming the aliens live in the right part of the galaxy to witness an Earth transit. Telescopes operated by the bulk of the Milky Way’s citizens will never line up with both the sun and Earth.

Focus on M dwarfs
The odds of finding life improve if astronomers focus their efforts on M dwarfs, which make up about three-quarters of the stars in the galaxy. The dim red orbs are small, so a transiting planet blocks a relatively large fraction of the star’s light, making transits easier to detect. Habitable worlds also transit more frequently. To sustain liquid water, a planet must huddle close to one of these cool stars to stay warm. An orbit in the habitable zone of an M dwarf is much shorter than a comparable trip around the sun. Rather than wait for a year between transits, astronomers might have to wait for only a few weeks or months. Plus, a planet on a cozy orbit is more forgiving when it comes to getting the viewing geometry just right to see a transit.
There are potential downsides to M dwarfs. Most of the light they radiate is infrared, so photosynthesis on orbiting planets would be very different compared with photosynthesis on Earth. There’s no guarantee that biosignatures from vegetation that thrives on infrared light would look anything like those from local varieties. Many M dwarfs also emit occasional blasts of ultraviolet radiation — blasts made even more dangerous because any habitable planet sits close to the star. Habitable worlds need to be so close, in fact, that the star’s gravity might prevent the planet from rotating, which could give rise to extreme climate differences between day and night. Recent research, though, indicates that none of these issues are necessarily deal breakers (SN: 2/7/15, p. 7). “There’s no reason why a planet around an M star couldn’t be like Earth,” says Lisa Kaltenegger, an astrophysicist at Cornell.

James Webb should be able to poke around in the atmospheres of a few habitable super-Earths around M dwarfs, though it’s going to need some targets first (SN: 5/17/14, p. 6). NASA’s premier planet hunter, the Kepler space telescope, (SN: 12/27/14, p. 20) found 1,039 exoplanets during its four-year primary mission, with 4,706 additional candidates awaiting confirmation. But most of Kepler’s finds are too distant for James Webb. That’s where TESS comes in. It will catalog all the short-period transiting worlds around the sun’s nearest neighbors. “Those are the ones that astronomers even decades from now are going to want to focus on,” says George Ricker, an MIT astrophysicist and principal investigator for the TESS mission.

Unlike Kepler, which gazed in one direction at 150,000 stars, TESS will spend two years monitoring 200,000 stars all around the sky. To cover that much ground, TESS will stare at one spot for about 27 days before moving onto a new patch. That’s not great for finding Earth twins on year-long orbits, but it’s good for finding worlds in the habitable zones of M dwarfs.

Based on Kepler’s results, astrophysicist Peter Sullivan, then at MIT, and colleagues calculated in 2015 that TESS should discover about 1,700 exoplanets. Of these, more than 500 could be less than twice the size of Earth, of which about 50 would lie in the habitable zones of their host stars. But picking biosignatures, or any signatures, out of those atmospheres is going to be difficult. Estimates vary, but James Webb will need roughly 200 hours to study one super-Earth around a nearby M dwarf, and those hours count only when the planet is passing in front of its star.

There’s a debate happening right now over how hard to chase that dream, Caltech’s Knutson says. Given its sluggish pace, James Webb might get to look at only a couple of habitable super-Earths. Astronomers could lavish large amounts of time on one or two systems that might not even pan out. Or they could focus telescope resources on Neptunes, Jupiters or hot super-Earths, where researchers can amass a lot of other data about a wide variety of worlds. While James Webb might get lucky and spy some biosignatures, the dream of finding another planet like Earth will probably have to wait a few decades for a larger observatory to come along.
Snapping a pic
The transit technique is powerful but inefficient. From our vantage point, most planets don’t transit their suns, and those that do transit only once every orbit.

“To really give us the best probability of detecting life, we need to build a telescope that can do direct detection,” Rugheimer says. Direct detection requires snapping a picture of an exoplanet and looking for biosignatures such as oxygen and methane imprinted on light reflecting off its surface. Since this technique doesn’t require alignments between planets and suns, it can, in principle, work for any world around any star. But to catch an Earth 2.0, astronomers are going to need a bigger telescope.

Consider again those aliens who are looking for us. They would struggle to see Earth even if they set up camp 4.2 light-years away at the star next door, Proxima Centauri (an M dwarf, by the way). It’s like trying to see the head of a quilting pin 28 meters to the right of a basketball while standing about 7,500 kilo-meters away — roughly the distance from Honolulu to Pittsburgh. And the basketball is 10 billion times as bright as the pin.

No observatories come close to being able to capture an image of an Earth-like planet around a sunlike star. But astronomers are thinking about what it would take. One idea is to put a gigantic mirror in space equipped with a device that can block the light of the star, such as the High-Definition Space Telescope proposed by the Association of Universities for Research in Astronomy. To see a few dozen Earth twins and characterize their atmospheres, that telescope would need a mirror 12 meters across. That’s bigger than any optical telescope currently on the ground and has 25 times the light-collecting area of Hubble.

Such an observatory “would be a huge undertaking relative to what we’ve done in space before,” Lunine says. “But relative to other programs this country has undertaken, it’s not.”
One of the keys to success with the high-definition telescope is a coronagraph, a disk that blocks the light from any star the telescope points at. Many telescopes already use coronagraphs, especially spacecraft designed to look at the sun. James Webb will be outfitted with a coronagraph, though not one designed to search for other Earths.

The downside to a coronagraph is that it requires exceptional control of light that enters the telescope, which complicates the design. Other proposals to detect Earth-like planets, such as the NASA-commissioned Exo-S concept, use a starshade, a separate spacecraft shaped, appropriately, like the petals of a sunflower. The starshade flies tens of thousands of kilometers away from the telescope and maintains perfect alignment to prevent starlight from hitting the mirror (SN: 7/12/14, p. 11).

Since a starshade is free-floating and does all the lightsuppression work, it should be able to partner up with any telescope, even a relatively small one already in use. But no one has attempted formation flying in space at this scale. And every time astronomers want to look at a new star, the starshade would have to move around the telescope to maintain alignment, which could take days or weeks. All that movement will require fuel, which limits how many stars astronomers can search.
Today these missions and others like them exist only in papers and PowerPoint slides posted online. The concepts, the fruits of a community-wide brainstorming session on how to allocate funding in the 2030s and beyond, will require massive financial and logistical resources, but some astronomers think it will be worth it once TESS and James Webb can point to where the nearest habitable locales might be. “Once we know where the potential habitable worlds are in our sky, I hope that will change a lot of people’s curiosity,” Kaltenegger says. “I would want to know if there are other habitable worlds. I wouldn’t want to just guess.”

Everyone agrees that finding a world teeming with life elsewhere in the galaxy is going to be exceptionally difficult. “Maybe nature needs to be on our side,” says Mark Clampin, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “But it won’t stop people from trying very hard. And we’ll probably make a lot of discoveries along the way.”

Refined ‘three-parent-baby’ procedure improves chances for healthy infant

Improvements in a technique for making “three-parent babies” could reduce the risk of passing on faulty mitochondria, the energy-producing organelles in cells.

Less than 2 percent of mitochondria were defective in most human embryos created from this refined “pronuclear transplantation” procedure, researchers report online June 8 in Nature.

Pronuclear transplantation is one of two ways to transfer nuclear DNA from a mother’s egg that has faulty mitochondria to a donor egg with healthy mitochondria. After fertilization, the mother’s and father’s chromosomes don’t merge but are encased in separate membranes inside the mother’s egg. In pronuclear transplantation, researchers remove both of these DNA packages, known as pronuclei, and inject them into an empty donor egg.
Any resulting children would inherit DNA from three parents: most from their mother and father, with a small amount of mitochondrial DNA from the egg donor. DNA transplant techniques may prevent mothers from passing mitochondrial diseases to their children. Such diseases, which result from mutations in mitochondrial DNA, particularly affect energy-hungry organs, including the brain and muscles.

Last month, researchers reported that even small amounts of defective mitochondria carried into the healthy egg might propagate and negate the effect of the therapy (SN Online: 5/19/16).

In the new study, flash-freezing the mother’s egg, removing pronuclei soon after they form (about eight hours after fertilization) and other refinements greatly reduced the amount of defective mitochondria transplanted into donor eggs. Of embryos created, 79 percent carried less than 2 percent of defective mitochondria, report reproductive biologist Mary Herbert of the Wellcome Trust Centre for Mitochondrial Research in Newcastle upon Tyne, England, and colleagues.

That decrease in defective mitochondria doesn’t eliminate the risk of disease resurgence, but greatly reduces it, says Herbert. “The focus of our current research is to get that carryover as close to zero as we possibly can.”

Molecular handedness found in space

SAN DIEGO — A clue about why life on Earth chooses only one mirror-image form of certain molecules might lie in a gas cloud tens of thousands of light-years away.

For the first time, researchers have detected a chiral molecule, propylene oxide, in interstellar space. Chiral molecules, which come in two mirror-image versions, show up in many of life’s building blocks, such as the amino acids that make up proteins as well as sugars. The finding may be a step toward understanding why life prefers one of these versions over another.
The results were presented June 14 at a meeting of the American Astronomical Society and published online the same day in Science.

Chiral molecules are like opposing hands. Left hands and right hands mirror each other, but no amount of turning will get them to match when overlaid. Matching configurations of a chiral molecule are labeled as either left-handed or right-handed.

Amino acids and sugars come in both styles of handedness. But life on Earth exclusively uses left-handed amino acids and right-handed sugars. “This is one of the longest standing mysteries in the origin of life,” Brett McGuire, a chemist at Caltech, said at a news briefing.

Chiral molecules have shown up in meteorites with a slight preference for one configuration. McGuire and colleagues went looking for chiral molecules in space to see whether some interstellar intervention could preferentially seed a solar system with one handedness. The researchers sifted through radio observations from the Green Bank Telescope in West Virginia of a gas cloud dubbed Sagittarius B2. The nebula sits near the center of the galaxy and has historically been a rich hunting ground for interstellar molecules.

McGuire and colleagues found that the cloud was loaded with the chiral molecule propylene oxide. The stockpile has a mass equal to about 80 percent of Earth’s mass, said McGuire, and if compressed into a liquid blob, it would occupy a volume over five times that of our planet. The observations don’t reveal whether the cloud has a preference for one handedness over another; that will have to wait for future observations. But “we’re in the best position we could possibly be,” said McGuire, to figure out if life’s chiral exclusivity has an interstellar origin.

Quantum counterfeiters might succeed

Scientists have created an ultrasecure form of money using quantum mechanics — and immediately demonstrated a potential security loophole.

Under ideal conditions, quantum currency is impossible to counterfeit. But thanks to the messiness of reality, a forger with access to sophisticated equipment could skirt that quantum security if banks don’t take appropriate precautions, scientists report March 1 in npj Quantum Information. Quantum money as a concept has been around since the 1970s, but this is the first time anyone has created and counterfeited quantum cash, says study coauthor Karel Lemr, a quantum physicist at Palacký University Olomouc in the Czech Republic.
Instead of paper banknotes, the researchers’ quantum bills are minted in light. To transfer funds, a series of photons — particles of light — would be transmitted to a bank using the photons’ polarizations, the orientation of their electromagnetic waves, to encode information. (The digital currency Bitcoin is similar in that there’s no bill you can hold in your hand. But quantum money has an extra layer of security, backed by the power of quantum mechanics.)

To illustrate their technique in a fun way, the researchers transmitted a pixelated picture of a banknote — an old Austrian bill depicting famed quantum physicist Erwin Schrödinger — using photons’ polarizations to stand for grayscale shades. In a real quantum money system, each bill would be different and the photon polarizations would be distributed randomly, rather than forming a picture. The polarizations would create a serial number–like code the bank could check to verify that the funds are legit.

A criminal intercepting the photons couldn’t copy them accurately because quantum information can’t be perfectly duplicated. “This is actually the cornerstone of security of quantum money,” says Lemr.
But the realities of dealing with quantum particles complicate matters. Because single photons are easily lost or garbled during transmission, banks would have to accept partial quantum bills, analogous to a dollar with a corner torn off. That means a crook might be able to make forgeries that aren’t perfect, but are good enough to pass muster.
Lemr and colleagues used an optimal cloner, a device that comes as close as possible to copying quantum information, to attempt a fake. The researchers showed that a bank would accept a forged bill if the standard for accuracy wasn’t high enough — more than about 84 percent of the received photons’ polarizations must match the original.

Previously, this vulnerability “wasn’t explicitly pointed out, but it’s not surprising,” says theoretical computer scientist Thomas Vidick of Caltech, who was not involved in the research. The result, he says, indicates that banks must be stringent enough in their standards to prove the bills they receive are real.

New setup for image recognition AI lets a program think on its feet

Artificial intelligence is getting some better perspective. Like a person who can read someone else’s penmanship without studying lots of handwriting samples, next-gen image recognition AI can more easily identify familiar sights in new situations.

Made from a new type of virtual building block called capsules, these programs may cut down the enormous amount of data needed to train current image-identifying AI. And that could boost such technology as machine-made medical diagnoses, where example images may be scarce, or the responsiveness of self-driving cars, where the view is constantly shifting. Researchers with Google will present this new version of an artificial neural network at the Neural Information Processing Systems conference in Long Beach, Calif., on December 5.
Neural networks are webs of individual virtual nerve cells, or neurons, that learn to pick out objects in pictures by studying labeled example images. These networks largely classify pictures based on whether they contain certain features. For instance, a program trained on a series of head shots might conclude that a face has two eyes, a nose and a mouth. Show that program a face in profile with only one eye visible, though, and it may not recognize the photo as a face, explains Roland Memisevic, a computer scientist at the University of Montreal who was not involved in the work.

To overcome that limitation, researchers can train a neural network on millions of photos from myriad angles, and the program memorizes all the different ways a face might look. Compared with the human brain, which doesn’t need anywhere near a million examples to know what a face looks like, this system is wildly inefficient. “It’s a disaster,” Memisevic says. “Capsules try to fix that.”

Instead of webs of individual artificial neurons, these new programs have webs of clusters of neurons, called capsules. These teams of neurons can provide more information than one neuron by itself. Each capsule is designed to track not only whether a certain feature is in an image, but also properties of that feature — say, a nose’s size, orientation and position. This spatial awareness helps the program better recognize objects in previously unseen scenarios.

A capsule-containing network trained on head shots could see a face in profile and deduce — based on the appearance of the visible eye, nose and mouth — that the other eye is simply obscured, and the picture depicts a face. Since capsule networks are better at applying what they know to new situations, these neural networks need less training data to achieve the same performance as their predecessors, says Sara Sabour, a computer scientist with Google Brain in Toronto.
Sabour and her colleagues trained one capsule network on images of handwritten numbers and tested it on pictures where each number was slightly distorted. The capsule network recognized the warped images with 79 percent accuracy; a typical neural network trained on the same amount of data only got 66 percent right.

In another experiment, Sabour and colleagues trained a similar capsule network on tens of thousands of photos of toys, and then asked it to recognize the toys from new viewpoints. In this challenge, reported in a paper submitted to the 2018 International Conference on Learning Representations in Vancouver, the capsule network was wrong only about 1.4 percent of the time. A conventional neural network made almost twice as many errors.

Mini brains may wrinkle and fold just like ours

PHILADELPHIA — Flat brains growing on microscope slides may have revealed a new wrinkle in the story of how the brain folds.

Cells inside the brains contract, while cells on the outside grow and push outward, researchers at the Weizmann Institute of Science in Rehovot, Israel, discovered from working with the lab-grown brains, or organoids. This push and pull results in folds in the organoids similar to those found in full-size brains. Orly Reiner reported the results December 5 at the joint meeting of the American Society for Cell Biology and the European Molecular Biology Organization.
Reiner and her colleagues sandwiched human brain stem cells between a glass microscope slide and a porous membrane. The apparatus allowed the cells access to nutrients and oxygen while giving the researchers a peek at how the organoids grew. The cells formed layered sheets that closed up at the edges, making the organoids resemble pita bread, Reiner said. Wrinkles began to form in the outer layers of the organoids about six days after the mini brains started growing.

These brain organoids may help explain why people with lissencephaly — a rare brain malformation in which the ridges and folds are missing — have smooth brains. The researchers used the CRISPR/Cas9 gene-editing system to make a mutation in the LIS1 gene. People with lissencephaly often have mutations in that gene. Cells carrying the mutation didn’t contract or move normally, the team found.

Reiner and her colleagues aren’t the first to propose the push-pull idea for how brains fold. But the researchers were able to show the concept at work in their experimental system, says biophysicist Xavier Trepat of the Institute for Bioengineering of Catalonia in Barcelona, who was not involved in the study. “They really were able to reproduce the shape of what we all imagine the brain should look like,” he says. “It’s not a brain, but they see structures that look like it.”

U.S. religion is increasingly polarized

There’s both inspiring and troubling news for holiday worshippers.

Unlike other historically Christian Western nations, the United States is not losing its religion, say sociologists Landon Schnabel of Indiana University Bloomington and Sean Bock of Harvard University. But America is becoming as polarized religiously as it is politically, the researchers report online November 27 in Sociological Science.

Intense forms of religion, such as Christian evangelicalism, have maintained their popularity for nearly 30 years, Schnabel and Bock find after analyzing almost 30 years of U.S. survey data. At the same time, moderate forms of religion, such as mainline Protestantism, have consistently lost followers.
Religious moderates’ exodus from their churches stems partly from a growing link between religion and conservative politics, exemplified by the rise of the religious right in the late 1980s, the researchers suspect. Political liberals and moderates who already felt lukewarm toward the religion of their parents increasingly report identifying with no organized religion, especially if leaders of their childhood churches have taken conservative stances on social issues. Many Americans still report that they believe in God and pray, so they haven’t turned to atheism, the scientists say.

Population trends also favor intense forms of religion, Schnabel holds. Mainline Protestantism’s decline from 35 percent of the U.S. population in 1972 — about 73.5 million people — to 12 percent in 2016 — nearly 39 million people — reflects low fertility rates among these Protestants and limited numbers of new adherents from immigration and conversion. Opposite trends among U.S. evangelicals helped their form of intense Christianity surge from 18 percent of the population in 1972 to a steady level of about 28 percent from 1989 to 2016.

“More moderate forms of organized religion could become increasingly irrelevant in the United States,” Schnabel says.
The new findings play into an academic debate about the fate of religion in modern societies. Some scholars argue that in wealthy nations marked by scientific advances, religion inevitably withers. National surveys in 13 other Western, historically Christian nations show a general weakening of religious beliefs, even among intense believers, since 1991, the researchers find. But Schnabel and Bock are among those who view the United States as an exception where intense religion holds steady and even many of those leaving churches keep their faith.

The researchers examined data from nationally representative surveys on religion and other topics conducted from 1989 to 2016 by the General Social Survey, or GSS, a project of the National Opinion Research Center at the University of Chicago. GSS surveys include approximately 1,500 people annually.

Story continues below image
The proportion of the U.S. population citing strong ties to any religion held steady at around 36 percent during the study period. But the share of adults identifying themselves as religiously unaffiliated rose from around 9 percent to around 20 percent of the population, the researchers report. In another sign of loosening religious ties, those who never attended religious services rose from around 14 percent to around 25 percent of the population. Occasional attendance dropped from about 80 percent to about 70 percent.

Still, those who rarely or never prayed remained at about 24 percent of the population from 1989 to 2016. People who prayed several times a day rose from around 24 percent to about 30 percent of the total.

A belief in the Bible as God’s literal word held steady at roughly one-third of Americans. A view of the Bible as inspired by a higher power but not literal fell slightly to just under half of the population. Those tagging the Bible as a book of fables rose from around 15 percent to around 22 percent.

The new findings underscore the growing polarization of U.S. religion, say Michael Hout of New York University and Claude Fischer of the University of California, Berkeley. In a 2014 report based on GSS data, the two sociologists found that most political liberals and some political moderates who weakly identified with their parents’ religion have increasingly said that they prefer no particular religion. That trend was most pronounced for those reporting that the church they grew up with had become an advocate of politically conservative positions. Many of those people expressed a qualified belief in God, endorsing neither atheism nor absolute certainty in a higher power’s existence. Political conservatives, including those who seldom attended services or had doubts about church doctrine, had no complaints about religious leaders’ conservative political pronouncements.

Members of the millennial generation born since 1990 report low levels of religious involvement regardless of their politics, Hout adds. Millennials are skeptical of institutions in general although most still believe in God, he says. “Millennials are more comfortable with do-it-yourself religion than none at all.”

Sociologists David Voas of University College London and Mark Chaves of Duke University disagree. Millennials are part of a larger U.S. trend in which each successive generation over nearly the last century has reported slightly less intensity of religious belief than the one before, Voas and Chaves reported in a 2016 analysis of GSS data. For instance, in 2014, only 45 percent of U.S. adults ages 18 to 30 had no doubts that God exists versus 68 percent of those age 65 or over.

“The proportion of intensely religious Americans is being eroded, albeit very slowly,” Voas contends.

The sun’s outer atmosphere is far more complex than previously thought

NEW ORLEANS — Despite its smooth appearance, the sun’s wispy outer atmosphere is surprisingly full of knots, whorls and blobs.

Newly analyzed observations from NASA’s STEREO spacecraft show that the sun’s outer corona is just as complicated as the highly structured inner corona, solar physicists reported December 12 at the fall meeting of the American Geophysical Union. That previously unseen structure could help solve some of the sun’s biggest puzzles, including how the solar wind is born and why the corona is so much hotter than the solar surface.
The corona is made up of charged plasma, which roils in famous loops and fans that follow magnetic field lines emerging from the surface of the sun (SN Online: 8/17/17). At a certain distance from the sun, though, that plasma escapes the corona and streams through the solar system as the solar wind, a constant flow of charged particles that pummels the planets, including Earth (SN Online: 8/18/17).

But solar physicists don’t know where the plasma gets enough energy to accelerate away from the massive, magnetic sun. And they don’t understand why the corona, which sizzles at several million degrees Celsius, has such higher temperatures than the solar surface, which chills at a mere 5,500° C (SN Online: 8/20/17).

Both problems might be cleared up by better understanding an energetic process called reconnection, which happens when magnetic field lines merge when they get too close to each other. Reconnection releases energy and helps move plasma around, so the process could be important to heating the corona and driving solar wind.

But in the best observations until now, the outer corona appeared smooth and uniform. To explain that smoothness, field lines would have to keep their distance from each other without a lot of reconnection. What’s more, physicists couldn’t tell where the boundary between the corona and the solar wind began, which might help to find that missing energy source.
“That’s changed,” solar physicist Craig DeForest of the Southwest Research Institute in Boulder, Colo., said at the AGU meeting. “Using STEREO, we’ve recently been able to drill in deeply enough to see the transition at the outer edge of the corona, where the dynamics change from what we might call coronal plasma to what we might call the young solar wind plasma.”

Story continues below video、
DeForest and colleagues collected data for three days with STEREO in 2014 to gain more detail about small-scale changes in the outer corona than previously obtained. The researchers also processed the resulting images in a new way to bring those changes into focus.

Surprisingly, the team found that the outer corona is full of moving blobs and fine streams of plasma that vary in density by a factor of 10, suggesting that the magnetic field lines there are moving and merging more than scientists thought. “It turns out the apparent smoothness is a reflection of our instruments, not the corona itself,” DeForest says. “There’s almost certainly reconnection in the outer corona.”

The researchers also found that the corona probably fades into the solar wind between 14 million and 56 million kilometers away from the sun — about 10 to 40 times the sun’s diameter. That’s still a big range, but NASA’s Parker Solar Probe spacecraft, scheduled to launch in 2018, will fly right through that boundary. The probe will swoop within 6.4 million kilometers of the sun and take the first direct measurements of the corona — and perhaps figure out more precisely where the corona becomes the solar wind.

For now, the STEREO observations “are just tantalizing hints at an entire new set of phenomena,” DeForest says. Understanding the details of those processes “is going to require both careful analysis from Parker Solar Probe and also new, better imaging instruments.”

Solar physicist Steven Cranmer of the University of Colorado Boulder, who has made simulations of magnetic reconnection in the outer corona, finds the results exciting. Questions about the sun’s hot corona and the acceleration of the solar wind are still unsolved “not because of a lack of ideas, but because there are too many ideas,” he says. “I think we’re getting close to having the data that will let us rule out a good swath of these proposed ideas.”

Tiny scales in ancient lagoon may be the first fossil evidence of the moth-butterfly line

Newly described little scaly bits could push back the fossil record of the moth-and-butterfly branch on the tree of life by some 70 million years. That raises the question of whether the drinking-straw mouthparts evolved long before the flower nectar many drink today.

The microscopic ridged scales date from roughly 200 million years ago, around the time of one of Earth’s less famous mass extinctions, says fossil-pollen specialist Bas van de Schootbrugge of Utrecht University in the Netherlands. During an unrelated study of ocean oxygen during this dire time, he and his colleagues pulled up cores of sediment in northern Germany near Braunschweig from what had once been a huge lagoon. In the sediment lay mere dots of insect scales.
Comparing the ridges and inner structure of the scales with those from modern insects suggests the fossils came from the evolutionary branch of insects that today gives us moths and butterflies with nectar-sipping mouthparts. No recognizable mouthparts appeared in the sediment. Yet the early existence of distinctive scales might mean this moth-butterfly drinking organ, a proboscis, evolved before the explosion of the classic flowering plants that offer nectar for pollination, van de Schootbrugge and colleagues propose January 10 in Science Advances.
The land already had plants: ferns, mosses and their relatives growing under trees that formed just-about naked seeds, without cushy protective ovaries and other floral coddling. Naked-seeded plants, many of them wind-pollinated such as pines and other conifers, thrive today. But the great evolutionary burst of true flowers—magnolias, roses, legumes, asters and the whole multicolored rainbow — that many moths and butterflies pollinate had yet to arise.These fossils date from a turbulent time when the great land mass called Pangea was cracking into continents. As the Triassic Period ended and the Jurassic dawned, volcanic eruptions on the straining land spewed greenhouse gases and toxins that changed the atmosphere and climate.
The previous record-holder for earliest moth-butterfly fossils came from about 130 million years ago, a bit after a major expansion of flowering plants. But when coauthor Timo van Eldijk, also at Utrecht, compared the newly found insect scales with those from silverfish, beetles and other scaly insects, modern scales of a big branch of the moth-butterfly lineage proved the best match.
In the times of the ancient scales, generally hot and dry conditions might have favored mouthparts specialized for drinking whatever liquids were to be found, the researchers propose.

Other work on how this proboscis evolved proposes that early moths started with chewing mouthparts and ate spores and pollen, says Harald W. Krenn of the University of Vienna. He and colleagues have proposed an intermediate phase of a short, tubelike structure good for slurping up droplets such as “honeydew” copiously excreted by sap-feeding aphids. A big question, though, is when early moths might have evolved such a drinking convenience.

The notion that the moth mouthparts arose before a big floral takeover sounds plausible to paleoecologist Conrad Labandeira of the Smithsonian Institution in Washington, D.C. Drinking-straw mouthparts had evolved in at least three other big insect groups (dipteran flies, lacewings and scorpionflies) somewhat before the full floral evolutionary extravaganza. Even some of the ancient naked-seeded plant groups, such as cycads, secrete nutritious droplets from reproductive structures that modern insects visit.

Interpreting the scales as a sign of an early moth proboscis is “possible,” says taxonomist Erik van Nieukerken of the Naturalis Biodiversity Center in Leiden, the Netherlands, whose specialties include early moths. There are other possibilities, too, for imagining ancient moth mouthparts, he cautions. Saying definitely that the newfound scales reveal the dawn of the proboscis might be “a bit too quick.”