This sea snake looks like a banana and hunts like a Slinky

With its bright hue, this snake was bound to stand out sooner or later.

A newly discovered subspecies of sea snake, Hydrophis platurus xanthos, has a narrow geographic range and an unusual hunting trick. The canary-yellow reptile hunts at night in Golfo Dulce off Costa Rica’s Pacific coast. With its body coiled up at the sea surface, the snake points its head under the water, mouth open. That folded posture “creates a buoy” that stabilizes the snake so it can nab prey in choppy water, says study coauthor Brooke Bessesen, a conservation biologist at Osa Conservation, a biodiversity-focused nonprofit in Washington, D.C. In contrast, typical Hydrophis platurus, with a black back and yellow underbelly, hunts during the day, floating straight on calm seas.
The newly described venomous snake has been reported only in a small, 320-square-kilometer area of Golfo Dulce. After analyzing 154 living and preserved specimens, the researchers described the reptile’s characteristics July 24 in Zookeys. The scientists hope that the subspecies designation will enable the Costa Rican government to protect the sunny serpent, which they worry is already at risk from overzealous animal collectors.

Skeleton ignites debate over whether women were Viking warriors

Viking warriors have a historical reputation as tough guys, with an emphasis on testosterone. But scientists now say that DNA has unveiled a Viking warrior woman who was previously found in a roughly 1,000-year-old grave in Sweden. Until now, many researchers assumed that “she” was a “he” buried with a set of weapons and related paraphernalia worthy of a high-ranking military officer.

If the woman was in fact a warrior, a team led by archaeologist Charlotte Hedenstierna-Jonson of Uppsala University in Sweden has identified the first female Viking to have participated in what was long considered a male pursuit.
But the new report, published online September 8 in the American Journal of Physical Anthropology, has drawn criticism from some researchers. All that’s known for sure, they say, is that the skeleton assessed in the new report belonged to a woman who moved to the town where she was interred after spending her youth elsewhere.

“Have we found the Mulan of Sweden, or a woman buried with the rank-symbols of a husband who died abroad?” asks archaeologist Søren Sindbæk of Aarhus University in Denmark. There’s no way to know what meanings Vikings attached to weapons placed in the Swedish grave, Sindbæk says.

Although the new paper dubs the long-dead woman “a high-ranking female Viking warrior,” other interpretations of her identity are possible, Hedenstierna-Jonson acknowledges. But she notes that the Viking woman “was an exception in a sphere dominated by men, either if she was an active warrior or if she was ‘only’ buried in full warrior dress with a complete set of weapons.”

Excavations in the late 1800s at Birka, a Scandinavian trading center from the 700s to around 1000 (SN: 4/18/15, p. 8), uncovered the woman’s grave. Remains of Birka lie on the island of Björkö, about 30 kilometers west of present-day Stockholm. About 1,100 of more than 3,000 graves that encircle Birka have been unearthed.

Excavators noted that the body lay among a warrior’s gear. This equipment included an ax, a spear, arrows, a large knife, two shields and two horses. Playing pieces found in the grave, apparently for some type of board game, suggest the woman may have been a high-ranking officer with knowledge of military tactics and strategy, Hedenstierna-Jonson’s team speculates.
Researchers have typically assumed that Viking-era graves with weapons contain male warriors. Curiously, though, many skeletons in these graves, including that of the Birka woman, display no battle injuries.

Biological anthropologist Anna Kjellström of Stockholm University, a coauthor of the new study, reported at a meeting in 2013 that the Birka individual was a woman, based on pelvic shape and bone sizes. DNA from the Birka skeleton now confirms its female status and reveals many genetic similarities to present-day northern Europeans.

A comparison of two forms of radioactive strontium in teeth from the Birka woman, 15 other individuals excavated at Birka and pre-Viking age people from several parts of Sweden indicated that the woman moved to the trading center as a teenager or young woman. Humans absorb strontium from local rock formations through water and plant foods, leaving a chemical signature in teeth that approximately maps where these people grew up. The researchers estimate the woman was at least 30 years old when she died.

Findings in the new paper don’t demonstrate that the Birka woman was a Viking warrior, writes archaeologist Judith Jesch in a Sept. 9 post on her Norse and Viking Ramblings blog. Perhaps all alleged warriors in Viking-era warrior graves who lack serious wounds didn’t actually fight, contends Jesch, of the University of Nottingham in England. Hedenstierna-Jonson’s group provides no evidence that the Birka woman’s bones contain traces of strenuous physical activity expected from a warrior adept enough to avoid severe injuries, she writes.

“A certain amount of confusion” surrounds the original locations of bones excavated at Birka and then bagged for storage, including those of the proposed woman warrior, Jesch adds. Sloppy excavation practices at Birka more than 100 years ago sometimes accidentally lumped together bones from different graves, she says in her post.

Women could have been warriors during the Viking age, whether or not the Birka woman fought alongside men, says archaeologist Marianne Moen of the University of Oslo. Research over the past 30 years shows that Viking women were landowners, farmers, merchants, traders and participants in legal proceedings. Graves of two other Viking-era women, both in Norway, contain various weapons.

What’s important is not to hold women to a different standard than men when assessing comparable weapons placed in their graves, Moen asserts. The Birka find “was a warrior grave until it was sexed as female,” she says. “Now a lot of people would like to call it something else. That is where the danger lies here.”

Seeing an adult struggle before succeeding inspires toddlers to persevere too

I recently wrote about the power that adults’ words can have on young children. Today, I’m writing about the power of adults’ actions. Parents know, of course, that their children keep a close eye on them. But a new study provides a particularly good example of a watch-and-learn moment: Toddlers who saw an adult struggle before succeeding were more likely to persevere themselves.

Toddlers are “very capable learners,” says study coauthor Julia Leonard, a cognitive developmental psychologist at MIT. Scientists have found that these youngsters pick up on abstract concepts and new words after just a few exposures. But it wasn’t clear whether watching adults’ actions would actually change the way toddlers tackle a problem.

To see whether toddlers could soak up an adult’s persistence, Leonard and her colleagues tested 262 13- to 18-month-olds (the average age was 15 months). Some of the children watched an experimenter try to retrieve a toy stuck inside a container. In some cases, the experimenter quickly got the toy out three times within 30 seconds — easy. Other times, the experimenter struggled for the entire 30 seconds before finally getting the toy out. The experimenter then repeated the process for a different problem, removing a carabiner toy from a keychain. Some kids didn’t see any experimenter demonstration.

Just after watching an adult struggle (or not), the toddlers were given a light-up cube. It had a big, useless button on one side. Another button — small and hidden — actually controlled the lights. The kids knew the toy could light up, but didn’t know how to turn the lights on.

Though the big button did nothing, that didn’t stop the children from poking it. But here’s the interesting part: Compared with toddlers who had just watched an adult succeed effortlessly, or not watched an adult do anything at all, the toddlers who had seen the adult struggle pushed the button more. These kids persisted, even though they never found success.

The sight of an adult persevering nudged the children toward trying harder themselves, the researchers conclude in the Sept. 22 Science. Leonard cautions that it’s hard to pull parenting advice from a single laboratory-based study, but still, “there may be some value in letting children see you work hard to achieve your goals,” she says.

Observing the adults wasn’t the only thing that determined the toddlers’ persistence, not by a long shot. Some kids might simply be more tenacious than others. In the experiments, some of the children who didn’t see an experimenter attempt a task, or who saw an experimenter quickly succeed, were “incredibly gritty,” Leonard says. And some of the kids who watched a persistent adult still gave up quickly themselves. That’s not to mention the fact that these toddlers were occasionally tired, hungry and cranky, all of which can affect whether they give up easily. Despite all of this variation, the copycat effect remained, so that kids were more likely to persist when they had just seen a persistent adult.

As Leonard says, this is just one study and it can’t explain the complex lives of toddlers. Still, one thing is clear, and it’s something that we would all do well to remember: “Infants are watching your behavior attentively and actively learning from what you do,” Leonard says.

‘Killer Hurricanes’ reconstructs the past to predict storms of the future

In 1780, a powerful hurricane swept across the islands of the Caribbean, killing an estimated 22,000 people; 5,000 more died of starvation and disease in the aftermath. “Our planet is capable of unleashing extreme chaos,” begins the new NOVA documentary “Killer Hurricanes,” set to air November 1 on PBS.

To describe the human impact of such powerful tropical cyclones, the documentary primarily focuses on two storms: the Great Hurricane of 1780 and Hurricane Matthew, a Category 4 storm that slammed into Haiti and Cuba last October. Before the devastating 2017 Atlantic hurricane season (SN Online: 9/21/17), Matthew was considered the biggest Atlantic storm of the last decade.
Still, the film’s larger message remains timely: Studying the hurricanes of the past can offer insights into storms of the future — and, hopefully, help coastal and island communities prepare for such events.

The documentary describes the work of researchers as they examine both human and geologic records to track past cyclones. Because the Great Hurricane occurred during relatively recent history, researchers can use eyewitness accounts and ship records to estimate not only the size of the storm, but also to track its path and calculate the storm surge.
But geologists such as Jeff Donnelly of the Woods Hole Oceanographic Institution in Massachusetts and Amy Frappier of Skidmore College in Saratoga Springs, N.Y., are looking deeper into the past. Donnelly finds physical traces of prehistoric hurricanes buried in seafloor sediments, while Frappier detects chemical traces in stalagmites growing in caves across the Caribbean. These data reveal a troubling pattern: The frequency of strong hurricanes distinctly increases when ocean temperatures are warmer. What’s more, hurricanes’ paths have shifted northward over the last 450 years, moving closer to the contiguous United States.

As the film notes, ocean waters are now warming at a rapid rate. Meanwhile, sea levels are rising, and the water in the oceans expands as it warms. Both effects will augment the impact of storm surge from such cyclones.

“Killer Hurricanes” doesn’t break much new ground, and the film’s stark conclusion about the future paths and intensities of powerful cyclones is one that climate scientists have long been signaling. But coming on the heels of a deadly hurricane season, and with the United States’ future participation in the Paris climate accord in limbo (SN Online: 6/1/17), the film may serve as a powerful reminder of the human cost of climate change.

Photons are caught behaving like superconducting electrons

Light is a fan of the buddy system. Photons, or particles of light, have been spotted swapping energy with partners. This chummy behavior resembles how electrons pair up in materials that conduct current without resistance, known as superconductors, researchers report in a paper accepted in Physical Review Letters.

Although the photons exchange energy like electrons do, it’s unknown whether the particles are actually bound together as electrons are, and whether photons could produce an effect analogous to superconductivity. “This is a door that is opened,” says study coauthor Ado Jorio, a physicist at the Universidade Federal de Minas Gerais in Brazil. Now, he says, the questions that must be addressed are, “How far can we push this similarity? Can we find with photons incredible results like we find for electrons?”
In certain solid materials cooled to extremely low temperatures, electrons form partnerships called Cooper pairs (SN: 6/13/15, p. 8), which allow superconductivity to occur. Although the negatively charged particles typically repel one another, two electrons can bind together by exchanging phonons, or quantum packets of vibration, via the lattice of ions within these materials. This alliance coordinates the electrons’ movements and thereby eases their passage through the material, allowing them to flow without resistance. Superconductivity’s potential technological applications — which include energy-efficient power transmission, superstrong magnets and levitating trains — have attracted heaps of scientific interest in the phenomenon.

Now, Jorio and colleagues have shown photons behaving similarly to superconducting electrons. When the researchers shined a laser on water, pairs of photons that emerged from the liquid at the same time tended to have complementary energies. While one photon had lost a little energy, another had gained the same amount of energy, indicating that they were exchanging quantum vibrations. The effect appeared in a variety of transparent materials, says Jorio, and it was observed at room temperature, unlike electron pairing in superconductors.

The team also showed that the exchanged quantum vibrations were “virtual” — appearing only for fleeting moments — just like the vibrations exchanged by electrons. The theory that explains the interaction “is exactly the same as for the electrons,” Jorio says.

Scientists already knew that photons can lose or gain energy via vibrations, but the similarity with Cooper pairs is a new and interesting way of thinking about the effect, says physicist Ian Walmsley of Oxford University, who was not involved with the research. “It’s a field that has not yet been explored.”
It is still too early to know how far the analogy with superconducting electrons extends, says physicist Ben Sussman of the National Research Council of Canada in Ottawa, who was not involved with the research. But the connection seems worth investigating: “This is an interesting rabbit hole indeed.”

Scary as they are, few vampires have a backbone

Halloween horror aside, vampires are really pretty spineless.

Most have no backbone at all. By one count, some 14,000 kinds of arthropods, including ticks and mosquitoes, are blood feeders. Yet very few vertebrates are clear-cut, all-blood specialists: just some fishes and three bats. Why hasn’t evolution produced more vertebrate vampires?

The question intrigues herpetologist Harry Greene of Cornell University, who “can’t think of a single example among amphibians and reptiles,” he says. (Some birds are opportunists, sneaks or outright meat eaters, but they don’t have the extreme specialization of bats.)
Kurt Schwenk of the University of Connecticut in Storrs, who studies feeding morphology, comes up empty, as well. As he muses over what animals might have precursor biology that could lead to blood feeding, “a leechlike or lamprey-like blood-sucking tadpole should be a real possibility,” he says. The idea gives him “the heebie-jeebies,” but some tadpole species have already evolved mouths that can cling, and plenty of tadpoles are carnivorous.
Looking at the question from a different point of view — asking what would favor, or not, the evolution of blood feeding—he comes up with a less disturbing answer. For carnivorous animals, eating meat is nutritionally better than sipping blood alone, he says. So vampirism might not offer much of an advantage. “If you don’t need to be light and you’re not a parasite,” he says, there’s “no point in limiting yourself to blood.” So maybe vampiric tadpoles aren’t part of some creepy future after all.
Some adult fishes have evolved blood feeding, even mainstream vertebrates with jaws and bones (unlike cartilage-only jawless lampreys). Among the clear-cut bony examples are some Vandellia canidru catfishes, which fasten onto a gill of a much larger fish and let the fish heart pump sustenance into them as they nestle inside the protected gill chamber. (This is different from the supposed, or maybe mythical, tendency of some canidru catfishes to misunderstand fluid streams and swim up the urethras of humans in the water.)

Among vertebrates, vampirism inside or outside of gills might have arisen from ancestors that hitchhiked on big fishes and nibbled off parasites, in the same way modern remoras (also known as suckerfish) do, suggests parasitologist Tommy Leung of the University of New England in Armidale, Australia. Biologists already know about parasite-picker species, such as some cleaner fish, that will cheat and nip mucus or scales if they can get them. Actual blood-sucking cheats could be mere geologic ages away from that evolutionary step. Vertebrates may have relatively few vampires, but a greater number of almost-vampires.

Full-scale vampirism “is a tough way to make a living,” says William Schutt of Long Island University in Brookville, NY, and author of a book on the topic, Dark Banquet. But also, he adds, one big reason why there are fewer vertebrate vampires than arthropod bloodsuckers may be in the numbers. There are just fewer vertebrates: an estimated 60,000 versus a whopping 10 million arthropods.

New setup for image recognition AI lets a program think on its feet

Artificial intelligence is getting some better perspective. Like a person who can read someone else’s penmanship without studying lots of handwriting samples, next-gen image recognition AI can more easily identify familiar sights in new situations.

Made from a new type of virtual building block called capsules, these programs may cut down the enormous amount of data needed to train current image-identifying AI. And that could boost such technology as machine-made medical diagnoses, where example images may be scarce, or the responsiveness of self-driving cars, where the view is constantly shifting. Researchers with Google will present this new version of an artificial neural network at the Neural Information Processing Systems conference in Long Beach, Calif., on December 5.
Neural networks are webs of individual virtual nerve cells, or neurons, that learn to pick out objects in pictures by studying labeled example images. These networks largely classify pictures based on whether they contain certain features. For instance, a program trained on a series of head shots might conclude that a face has two eyes, a nose and a mouth. Show that program a face in profile with only one eye visible, though, and it may not recognize the photo as a face, explains Roland Memisevic, a computer scientist at the University of Montreal who was not involved in the work.

To overcome that limitation, researchers can train a neural network on millions of photos from myriad angles, and the program memorizes all the different ways a face might look. Compared with the human brain, which doesn’t need anywhere near a million examples to know what a face looks like, this system is wildly inefficient. “It’s a disaster,” Memisevic says. “Capsules try to fix that.”

Instead of webs of individual artificial neurons, these new programs have webs of clusters of neurons, called capsules. These teams of neurons can provide more information than one neuron by itself. Each capsule is designed to track not only whether a certain feature is in an image, but also properties of that feature — say, a nose’s size, orientation and position. This spatial awareness helps the program better recognize objects in previously unseen scenarios.

A capsule-containing network trained on head shots could see a face in profile and deduce — based on the appearance of the visible eye, nose and mouth — that the other eye is simply obscured, and the picture depicts a face. Since capsule networks are better at applying what they know to new situations, these neural networks need less training data to achieve the same performance as their predecessors, says Sara Sabour, a computer scientist with Google Brain in Toronto.
Sabour and her colleagues trained one capsule network on images of handwritten numbers and tested it on pictures where each number was slightly distorted. The capsule network recognized the warped images with 79 percent accuracy; a typical neural network trained on the same amount of data only got 66 percent right.

In another experiment, Sabour and colleagues trained a similar capsule network on tens of thousands of photos of toys, and then asked it to recognize the toys from new viewpoints. In this challenge, reported in a paper submitted to the 2018 International Conference on Learning Representations in Vancouver, the capsule network was wrong only about 1.4 percent of the time. A conventional neural network made almost twice as many errors.

Mini brains may wrinkle and fold just like ours

PHILADELPHIA — Flat brains growing on microscope slides may have revealed a new wrinkle in the story of how the brain folds.

Cells inside the brains contract, while cells on the outside grow and push outward, researchers at the Weizmann Institute of Science in Rehovot, Israel, discovered from working with the lab-grown brains, or organoids. This push and pull results in folds in the organoids similar to those found in full-size brains. Orly Reiner reported the results December 5 at the joint meeting of the American Society for Cell Biology and the European Molecular Biology Organization.
Reiner and her colleagues sandwiched human brain stem cells between a glass microscope slide and a porous membrane. The apparatus allowed the cells access to nutrients and oxygen while giving the researchers a peek at how the organoids grew. The cells formed layered sheets that closed up at the edges, making the organoids resemble pita bread, Reiner said. Wrinkles began to form in the outer layers of the organoids about six days after the mini brains started growing.

These brain organoids may help explain why people with lissencephaly — a rare brain malformation in which the ridges and folds are missing — have smooth brains. The researchers used the CRISPR/Cas9 gene-editing system to make a mutation in the LIS1 gene. People with lissencephaly often have mutations in that gene. Cells carrying the mutation didn’t contract or move normally, the team found.

Reiner and her colleagues aren’t the first to propose the push-pull idea for how brains fold. But the researchers were able to show the concept at work in their experimental system, says biophysicist Xavier Trepat of the Institute for Bioengineering of Catalonia in Barcelona, who was not involved in the study. “They really were able to reproduce the shape of what we all imagine the brain should look like,” he says. “It’s not a brain, but they see structures that look like it.”

U.S. religion is increasingly polarized

There’s both inspiring and troubling news for holiday worshippers.

Unlike other historically Christian Western nations, the United States is not losing its religion, say sociologists Landon Schnabel of Indiana University Bloomington and Sean Bock of Harvard University. But America is becoming as polarized religiously as it is politically, the researchers report online November 27 in Sociological Science.

Intense forms of religion, such as Christian evangelicalism, have maintained their popularity for nearly 30 years, Schnabel and Bock find after analyzing almost 30 years of U.S. survey data. At the same time, moderate forms of religion, such as mainline Protestantism, have consistently lost followers.
Religious moderates’ exodus from their churches stems partly from a growing link between religion and conservative politics, exemplified by the rise of the religious right in the late 1980s, the researchers suspect. Political liberals and moderates who already felt lukewarm toward the religion of their parents increasingly report identifying with no organized religion, especially if leaders of their childhood churches have taken conservative stances on social issues. Many Americans still report that they believe in God and pray, so they haven’t turned to atheism, the scientists say.

Population trends also favor intense forms of religion, Schnabel holds. Mainline Protestantism’s decline from 35 percent of the U.S. population in 1972 — about 73.5 million people — to 12 percent in 2016 — nearly 39 million people — reflects low fertility rates among these Protestants and limited numbers of new adherents from immigration and conversion. Opposite trends among U.S. evangelicals helped their form of intense Christianity surge from 18 percent of the population in 1972 to a steady level of about 28 percent from 1989 to 2016.

“More moderate forms of organized religion could become increasingly irrelevant in the United States,” Schnabel says.
The new findings play into an academic debate about the fate of religion in modern societies. Some scholars argue that in wealthy nations marked by scientific advances, religion inevitably withers. National surveys in 13 other Western, historically Christian nations show a general weakening of religious beliefs, even among intense believers, since 1991, the researchers find. But Schnabel and Bock are among those who view the United States as an exception where intense religion holds steady and even many of those leaving churches keep their faith.

The researchers examined data from nationally representative surveys on religion and other topics conducted from 1989 to 2016 by the General Social Survey, or GSS, a project of the National Opinion Research Center at the University of Chicago. GSS surveys include approximately 1,500 people annually.

Story continues below image
The proportion of the U.S. population citing strong ties to any religion held steady at around 36 percent during the study period. But the share of adults identifying themselves as religiously unaffiliated rose from around 9 percent to around 20 percent of the population, the researchers report. In another sign of loosening religious ties, those who never attended religious services rose from around 14 percent to around 25 percent of the population. Occasional attendance dropped from about 80 percent to about 70 percent.

Still, those who rarely or never prayed remained at about 24 percent of the population from 1989 to 2016. People who prayed several times a day rose from around 24 percent to about 30 percent of the total.

A belief in the Bible as God’s literal word held steady at roughly one-third of Americans. A view of the Bible as inspired by a higher power but not literal fell slightly to just under half of the population. Those tagging the Bible as a book of fables rose from around 15 percent to around 22 percent.

The new findings underscore the growing polarization of U.S. religion, say Michael Hout of New York University and Claude Fischer of the University of California, Berkeley. In a 2014 report based on GSS data, the two sociologists found that most political liberals and some political moderates who weakly identified with their parents’ religion have increasingly said that they prefer no particular religion. That trend was most pronounced for those reporting that the church they grew up with had become an advocate of politically conservative positions. Many of those people expressed a qualified belief in God, endorsing neither atheism nor absolute certainty in a higher power’s existence. Political conservatives, including those who seldom attended services or had doubts about church doctrine, had no complaints about religious leaders’ conservative political pronouncements.

Members of the millennial generation born since 1990 report low levels of religious involvement regardless of their politics, Hout adds. Millennials are skeptical of institutions in general although most still believe in God, he says. “Millennials are more comfortable with do-it-yourself religion than none at all.”

Sociologists David Voas of University College London and Mark Chaves of Duke University disagree. Millennials are part of a larger U.S. trend in which each successive generation over nearly the last century has reported slightly less intensity of religious belief than the one before, Voas and Chaves reported in a 2016 analysis of GSS data. For instance, in 2014, only 45 percent of U.S. adults ages 18 to 30 had no doubts that God exists versus 68 percent of those age 65 or over.

“The proportion of intensely religious Americans is being eroded, albeit very slowly,” Voas contends.

The sun’s outer atmosphere is far more complex than previously thought

NEW ORLEANS — Despite its smooth appearance, the sun’s wispy outer atmosphere is surprisingly full of knots, whorls and blobs.

Newly analyzed observations from NASA’s STEREO spacecraft show that the sun’s outer corona is just as complicated as the highly structured inner corona, solar physicists reported December 12 at the fall meeting of the American Geophysical Union. That previously unseen structure could help solve some of the sun’s biggest puzzles, including how the solar wind is born and why the corona is so much hotter than the solar surface.
The corona is made up of charged plasma, which roils in famous loops and fans that follow magnetic field lines emerging from the surface of the sun (SN Online: 8/17/17). At a certain distance from the sun, though, that plasma escapes the corona and streams through the solar system as the solar wind, a constant flow of charged particles that pummels the planets, including Earth (SN Online: 8/18/17).

But solar physicists don’t know where the plasma gets enough energy to accelerate away from the massive, magnetic sun. And they don’t understand why the corona, which sizzles at several million degrees Celsius, has such higher temperatures than the solar surface, which chills at a mere 5,500° C (SN Online: 8/20/17).

Both problems might be cleared up by better understanding an energetic process called reconnection, which happens when magnetic field lines merge when they get too close to each other. Reconnection releases energy and helps move plasma around, so the process could be important to heating the corona and driving solar wind.

But in the best observations until now, the outer corona appeared smooth and uniform. To explain that smoothness, field lines would have to keep their distance from each other without a lot of reconnection. What’s more, physicists couldn’t tell where the boundary between the corona and the solar wind began, which might help to find that missing energy source.
“That’s changed,” solar physicist Craig DeForest of the Southwest Research Institute in Boulder, Colo., said at the AGU meeting. “Using STEREO, we’ve recently been able to drill in deeply enough to see the transition at the outer edge of the corona, where the dynamics change from what we might call coronal plasma to what we might call the young solar wind plasma.”

Story continues below video、
DeForest and colleagues collected data for three days with STEREO in 2014 to gain more detail about small-scale changes in the outer corona than previously obtained. The researchers also processed the resulting images in a new way to bring those changes into focus.

Surprisingly, the team found that the outer corona is full of moving blobs and fine streams of plasma that vary in density by a factor of 10, suggesting that the magnetic field lines there are moving and merging more than scientists thought. “It turns out the apparent smoothness is a reflection of our instruments, not the corona itself,” DeForest says. “There’s almost certainly reconnection in the outer corona.”

The researchers also found that the corona probably fades into the solar wind between 14 million and 56 million kilometers away from the sun — about 10 to 40 times the sun’s diameter. That’s still a big range, but NASA’s Parker Solar Probe spacecraft, scheduled to launch in 2018, will fly right through that boundary. The probe will swoop within 6.4 million kilometers of the sun and take the first direct measurements of the corona — and perhaps figure out more precisely where the corona becomes the solar wind.

For now, the STEREO observations “are just tantalizing hints at an entire new set of phenomena,” DeForest says. Understanding the details of those processes “is going to require both careful analysis from Parker Solar Probe and also new, better imaging instruments.”

Solar physicist Steven Cranmer of the University of Colorado Boulder, who has made simulations of magnetic reconnection in the outer corona, finds the results exciting. Questions about the sun’s hot corona and the acceleration of the solar wind are still unsolved “not because of a lack of ideas, but because there are too many ideas,” he says. “I think we’re getting close to having the data that will let us rule out a good swath of these proposed ideas.”